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A model of strength degradation for ceramics subject to
damage from contact with hard spheres is developed. Pri-
mary attention is focused on tough ceramics with hetero-
geneous microstructures which deform in a quasi-plastic
mode. Brief consideration is also given to ideally brittle
ceramics which form classical ring cracks, as a comparative
baseline. Strength vs indentation load data from two mi-
crostructurally controlled ceramics, silicon nitride and a
micaceous glass-ceramic, illustrate distinctive strength deg-
radation responses: in fine-grain (F) form, ideally brittle
failure from ring cracks, with abrupt strength loss at the
critical load for crack initiation followed by a slow falloff at
increasing load; in coarse-grain (C) form, failure from
within the quasi-plastic zone, with continuous strength loss
beyond a load well above that for the onset of yield, and
with even slower falloff. Failure in the latter materials oc-
curs from contact-induced microdamage flaws with two
essential elements: an inner closed shear crack with fric-
tional sliding faces (‘‘shear fault’’), which forms within the
confining compression–shear contact field; an outer annu-
lar, kinked crack that initiates at the fault edges (‘‘wing
crack’’), and that extends in tensile local mode. The critical
fault–crack is modeled as a virtual crack, with the residual
field from the inner fault stabilizing the net driving force on
the outer wing crack during ensuing tensile loading. Finite
element modeling is used to evaluate the nonlinear elastic–
plastic contact fields, and to provide a relationship between
residual shear fault stress and contact load. The model ac-
counts for the essential qualitative and quantitative fea-
tures of the strength–load data, with provision for cata-
strophic degradation at high fault densities and extreme
loads by microcrack coalescence. The model also contains
the ingredients for analysis of contact fatigue, via attrition
of the frictional tractions on the residual fault.

I. Introduction

CONTACTS between curved surfaces, exemplified in Hertzian
tests with spherical indenters, constitute an important form

of loading in many ceramic-based structures, including ceramic
bearings,1,2 ceramic engine components,3 and biochemical
structures (ceramic dental restoratives,4 hip prostheses). Above
some critical load, depending on the radius of curvature of the

contacting surfaces, the ceramic structures sustain irreversible
damage that can compromise their useful lifetime. The nature
of this contact damage changes fundamentally as the ceramic
becomes coarser and more heterogeneous, and consequently
tougher, undergoing a ‘‘brittle–to–quasi-plastic’’ transi-
tion:5–10 in fine-grain, homogeneous microstructures classical
ring or cone cracks form in the region of weak tension outside
the contact; in coarse-grain, heterogeneous microstructures dif-
fuse microdamage forms in the region of strong compression–
shear beneath the contact. In the latter case the strong stress
gradients in the compression field ensure localization of the
microdamage within a well-defined near-field quasi-plastic
zone. At the microstructural level, the damage consists of
shear-activated microcracks,5,7,8,10,11with two basic elements:
‘‘closed’’ sliding facets, ‘‘shear faults’’ or mode II cracks with
internal frictional resistance, which form at weak grain or in-
terphase boundaries;12 ‘‘extensile’’ microcracks, mode I
‘‘wing cracks,’’ which initiate at some kink angle from the
fault edges.13–17 At extreme high loads or number of repeat
contacts neighboring microcracks may coalesce, resulting ulti-
mately in material disintegration within the damage zone,9 with
strong implications in wear and machining.18

An issue of importance in the context of design is the effect
that such brittle–to–quasi-plastic transitions have on the
strength of ceramics after contact damage has been sustained.
In ideally brittle homogeneous materials abrupt strength losses
occur beyond the critical load for cone crack initiation, with
continued but slower losses at increasingly higher loads. The
strength degradation in this class of structure has been well
analyzed in terms of conventional fracture mechanics.19–23No
such analysis exists for tough heterogeneous ceramics—in
these materials strength losses are not apparent until the load is
well beyond the ‘‘yield’’ point for the onset of quasi-plasticity,
and are thereafter continuous and even more gradual.7,10,24

Generally, the natural strength of heterogeneous ceramics is
lower than that of homogeneous ceramics, despite any in-
creased toughness, but may remain higher after indentation—
the degradation is considerably less, i.e., the material is more
damage tolerant. This relatively benign response in heteroge-
neous structures is consistent with the notion that failure oc-
curs from a single shear fault within the damage zone, at least
up to the point of coalescence, where strength losses begin to
accelerate.9

In this paper we construct a simple model for strength deg-
radation from Hertzian contacts in tough, heterogeneous ce-
ramics. For the sake of completeness, we first summarize ex-
isting models for failure from ring cracks in homogeneous
structures,19–23 with a minor modification to provide an im-
proved prediction. For the heterogeneous structures, failure is
taken to occur from an individual wing crack at the edge of a
critical individual fault within the contact microdamage zone.
A model is thereby developed for the degraded strength as a
function of contact load. The model takes into account the
contribution of residual shear stresses at the fault interface
(determined by the frictional tractions) to the driving force on
the ensuing extensile wing crack. In both damage modes we
treat the critical microcracks as center-loaded penny cracks,
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with the actual cracks growing as annular rings about virtual
centers. Experimental data from two well-characterized ce-
ramic systems, silicon nitride24 and a micaceous glass-
ceramic,25 are used as a basis for testing the validity of the
model. These material systems may usefully be prepared with
effectively homogeneous and heterogeneous microstructures.
Stress analysis of the contact stress field using a finite element
algorithm26 is an important adjunct to the modeling in the
heterogeneous structures. The model contains provision for
crack coalescence between neighboring faults at very high con-
tact loads (or number of cycles), with accelerated degradation;
and for progressive fatigue or wear, by attrition of internal
friction at the sliding shear fault interface.

II. Experimental Background

In this section we summarize essential Hertzian contact
test results from other studies on two ceramic materials which
show definitive transitions in contact response from brittle
to quasi-plastic with coarsening microstructure. The materials
are silicon nitride (Si3N4)24 and a machinable micaceous
glass-ceramic (MGC) supplied by Corning (Corning Co.,
NY),25,27–30the first relatively hard and the second relatively
soft. These two materials are readily transformed from ‘‘fine’’
(F) to ‘‘coarse’’ (C) states by simple heat treatments, yielding
the coarsened and elongated rod (Si3N4) and platelet (MGC)
microstructures indicated in Table I.

Hertzian contact tests conducted on the Si3N4 and MGC
materials in air, using tungsten carbide spheres, produce the
damage patterns shown in Figs. 1 and 2. The micrographs are
half-surface and section views from ‘‘bonded-interface’’ ce-
ramographic specimens.4,24In theF microstructures (Figs. 1(a)
and 2(a)), characteristic cone cracks are formed outside the
contact. A slight depression within the surface ring crack trace
is observed inF-MGC (Fig. 2(a)), indicating limited quasi-
plasticity even in the fine-grain state of this relatively soft
material.30 In theC microstructures (Figs. 1(b) and 2(b)), well-
developed quasi-plastic damage zones are formed beneath the
contact. Cone cracking is suppressed, although vestigial ring
crack traces are observed on the harderC-Si3N4 surfaces (Fig.
1(b)). Scanning electron microscopy indicates that the damage
zones consist of shear-activated microfailures at or near the
interfaces between the rods in the Si3N4

10 or platelets in the
MGC7,30 and the second phase, i.e., ‘‘shear faults,’’ with at-
tendant microcracks extending into the matrix at the higher
contact loads.

These two distinct modes of contact damage lead to funda-
mentally different strength properties. Surface micrographs of
failures from Hertzian indentation sites in Si3N4 and MGC bars
broken in four-point flexure are shown in Figs. 3 and 4. In the
F microstructures (Figs. 3(a) and 4(a)) the break initiates from
the base of the ring cracks, indicating a brittle failure. In theC
microstructures (Figs. 3(b) and 4(b)) the break originates closer
to the contact center, traversing the contact peripheries almost
orthogonally, indicating failure from the subsurface quasi-
plasticity zone.

StrengthssF are plotted as a function of contact loadP for
Si3N4

31 (WC sphere radiusr 4 2.38 mm) and MGC25 (r 4
3.18 mm) in Figs. 5 and 6. The data points are experimental test
results: solid symbols represent failures from contact sites;
open symbols represent failures from extraneous flaws. Shaded
boxes at the left axes represent natural strengths from breaks on
unindented specimens, means and standard deviations for a
minimum of 10 tests. Vertical dashed lines indicate critical
loads at the onset of fully penetrant cone cracking,PC, and of
yield, PY, measured independently by detecting the first indi-
cations of indentation damage on polished surfaces.24,25 Also
indicated, for the coarse structures (Figs. 5(b) and 6(b)), is the
load at which strength degradation first occurs,PD. Note that in
F-Si3N4 (Fig. 5(a))PC << PY (PY > 5000 N, off scale), con-
firming a highly brittle material, whereas inF-MGC (Fig. 6(a))
PY < PC, consistent with a softer material. In bothF materials,
however, the strength loss is abrupt atP 4 PC, consistent with
failure from dominant ring cracks (Figs. 3(a) and 4(a))—the
preceding yield inF-MCG is not sufficient to deter brittle
fracture. Thereafter, the strength falls off slowly with increas-
ing load, as the ring cracks increase in size.24,25 In both C
structures,PY << PC (PC off scale), but strength loss does not
occur untilPD is well abovePY, even though failure originates
from dominant quasi-plastic zones (Figs. 3(b) and 4(b)). Again,
the subsequent degradation is gradual, notwithstanding an
ever-expanding damage zone at increasing loads.24,25

The solid curves in Figs. 5 and 6 are theoretical fits to the
data, to be described later in Section V.

III. Fine Microstructures: Failure from Cone Cracks

In this section we briefly review the mechanics of failure
from ring cracks in brittle, fine-grain ceramics. We draw on
earlier treatments,19,23adding a minor modification to allow for
the fact that the cracks in Figs. 1(a) and 2(a) are not full, but
truncated, cones.

Above a critical contact loadP 4 PC a ring crack pops in
abruptly from a surface flaw.32,33The crack geometry is shown
schematically in Fig. 7. The dimensionc of the actual ring
crack is related to the dimensionC of a ‘‘virtual’’ cone with its
tip located above the contact surface:

C 4 c + R0/cosa0 (1)

whereR0 is the surface ring radius anda0 the angle between
cone crack and specimen surface. Our aim is to derive an
expression for the strength of a material containing such a
crack.

The stress-intensity factor for this virtual cone crack system
can be well approximated by a simple relation for pennylike
cracks.24,34 For materials governed by a single-valued tough-
nessKIC 4 T0, as befits fine-grain structures, this relation is

K 4 xP/C3/2 4 T0 (2)

with x a crack geometry coefficient.33,35 The parameterx can

Table I. Microstructures of Ceramics Used in This Study
Material Grain structure Concn (vol%) Morphology Grain size (mm)

F-Si3N4 a-Si3N4 75 Equiaxed 0.4
b-Si3N4 15 Elongate–rods 1.5 × 0.4
Oxynitride glass 10 Bonding phase

C-Si3N4 b-Si3N4 90 Elongate–rods 9 × 1.5
Oxynitride glass 10 Bonding phase

F-MGC Mica 55 Platelets 0.3 × 1.0
Fluorosilicate glass 45 Bonding phase

C-MGC Mica 55 Platelets 1.2 × 8
Fluorosilicate glass 45 Bonding phase
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be calibrated from measurements of equilibrium cone crack
lengths at specified loads,C 4 (xP/T0)2/3.

In the absence of any significant residual stresses associated
with the indentation damage zone, failure occurs unstably from
a dominant flaw according to the Griffith strength relation

sF 4 T0/Cc1/2 (3)

with C a geometry coefficient. AtP < PC, sF is governed by
the size of preexisting natural flaws,c 4 cf, and is equal to the
natural (pre-indentation) strength,s0, independent ofP. At P >
PC, the strength is governed by the sizec of the developed ring
crack, determinable from Eqs. (1) and (2). In this region,sF is
dependent onP, but the dependence is slow (P−1/3 in the
asymptotic limitC >> R0/cosa0), and is only slowly dependent
on r, through R0. The coefficientC(a) for a ring crack of

specified anglea0 is predeterminable from a detailed fracture
mechanics analysis of crack reinitiation from the cone base in
tensile fields19 (Appendix A).

The earlier analyses19,23 neglect the truncation of the cone
by treatingC andc in Eq. (1) as identical, a condition that is not
well satisfied unlessc >> R0.

IV. Coarse Microstructures: Failure from Shear Faults

Now consider the case of tough, coarse-grain ceramics of
primary interest here, where failure occurs from the microdam-
age zone beneath the spherical indenter. Suppose that this mi-
crodamage zone consists of a distribution of shear faults, well
spaced so that overlap with neighbors does not occur at any

Fig. 2. Half-surface and side views of Hertzian contact damage in machinable glass-ceramics: (a) fine-grainF-MGC, (b) coarse-grainC-MGC.
Indentations with WC sphere radiusr 4 3.18 mm at loadP 4 1000 N. Note transition from fracture-dominated to plasticity-dominated damage
pattern. Nomarski optical micrographs, bonded-interface specimens. (From Ref. 25.)

Fig. 1. Half-surface and side views of Hertzian contact damage in silicon nitrides: (a) fine-grainF-Si3N4, (b) coarse-grainC-Si3N4. Indentations
with WC sphere radiusr 4 1.98 mm at loadP 4 4000 N. Note transition from fracture-dominated to plasticity-dominated damage. Nomarski
optical micrographs, bonded-interface specimens. (From Ref. 24.)
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stage during the loading history. (We will consider the case
where the fault density is high enough to cause overlap later in
Section VI). Failure can then be assumed to occur from a single
critical fault within the damage zone, as depicted in Fig. 8. The
critical fault is taken to be located below the surface along the
contact axis, oriented at 45° to this axis, where the shear stress
is maximum.26 When this maximum shear stress exceeds some
threshold level, the fault surfaces slide over each other, con-
centrating the stresses at the fault edges. The ensuing extensile
wing crack is considered to extend at 45° to the fault plane,
normal to the specimen surface, so that it experiences maxi-
mum tension in the subsequent flexure field. This configuration
idealizes the optimum geometry somewhat, especially in re-
gard to the angle of the wing crack,14,15 but captures the es-
sence of the problem with minimum geometrical complication.

In the following analysis we shall assume that the crack
lengths at failure are sufficiently small that toughness can again
be taken as single-valued, corresponding to some representa-

tive valueT0 in the short-crack region of any toughness curve.
As we shall see (Section V(2)), the strength relation for coarse
microstructures can be reduced to normalized form in loadP,
eliminating any explicit dependence onT0. Because of the
relative complexity of the wing-crack geometry, we shall en-
counter several configurational parameters en route to this
strength relation. The normalization procedure will eliminate
the need to predetermine these parameters, reducing the data
fitting to adjustment of just one unknown load quantity.

(1) Residual Shear Stress at Sliding Fault
Consider the response of a shear fault within a small volume

element in the damage field, such that the stresses within the
element are uniform and compressive. Solutions for uniform
stress states can be used to provide constitutive stress–strain
relations for analysis of the much more complex nonuniform,
nonlinear and triaxial contact fields,12 using numerical (FEM)
procedures.26

Fig. 4. Surface views of contact failure sites in glass-ceramic specimens: (a)F-MGC, (b) C-MGC. Indentations with WC spherer 4 3.18 mm
at loadP 4 1000 N. Nomarski optical micrographs, four-point bend-strength specimens, tension axis horizontal.

Fig. 3. Surface views of contact failure sites in silicon nitride specimens: (a)F-Si3N4, (b) C-Si3N4. Indentations with WC spherer 4 2.38 mm
at loadP 4 4000 N. Nomarski optical micrographs, four-point bend-strength specimens, tension axis horizontal.
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The critical fault in the contact field at peak loadP in Fig. 8
is subject to a net shear stress

t* 4 tP − tf

4 tp − (tc + ms*) (4)

wheretP is the resolved shear stress on the fault plane andtf is
a friction resistance stress, withtc a ‘‘cohesion’’ stress,m a
friction coefficient, ands* the resolved compression stress
normal to the fault plane.14,36(The sign oftf in Eq. (4) reverses
on unloading.) The conditiont* > 0, tP > tf corresponds to
forward sliding (yield). Of the two friction terms,tc is of
greater importance in accounting for the existence of a well-
defined yield stress,12 pertinent to the quasi-plastic materials of
interest here. In this work we will find it mathematically ex-
pedient to proceed in the approximationm 4 0, so that Eq. (4)
reduces tot* 4 tP − tc.

Equation (4) implies the existence of a residual shear stress
on the fault at completion of contact.12 If t* # tc, no reverse
sliding occurs during unloading (lowP), and the net stresst*
attained at peak loading persists after contact. If reverse sliding
occurs (highP), t* reduces totc at full unloading. For sim-
plicity, we will assume the former condition, and justify this
assumption later (Section VII).

Inclusion of the frictional termstc andm in Eq. (4) contains
provision for fatigue, by attrition of thetf term and consequent
enhancement oft with progressive sliding.37

(2) Fracture Mechanics
As indicated, the net shear generates stress concentrations at

the fault ends in Fig. 8, initiating wing cracks approximately

parallel to the major compression axis.13–17,38Treatments by
Horii and Nemat-Nasser14 and other16,17 smooth out compli-
cations from the kink geometry by replacing the fault with a
concentrated line force acting at the edge of the fault, and
treating the ensuing wing crack as a reinitiation problem. Horii
and Nemat-Nasser14 introduce an ‘‘effective crack length’’
correction term to allow for the nonzero fault size. Another
approach considers the shear fault and extensile crack as part of

Fig. 7. Model for ring crack formed at contact loadP. The system is
treated as a penny crack of virtual radiusC 4 c + R0/cosa0.

Fig. 5. Strength degradation of Hertzian-indented silicon nitrides as
function of contact load: (a)F-Si3N4, failure from ring cracks; (b)
C-Si3N4, failure from shear faults. Indentations with WC sphere,r 4
2.38 mm. Four-point bend-strength specimens, 3 mm × 4 mm × 25
mm, with polished surfaces and chamfered and polished edges. Tests
in fast loading (<10 ms) in inert environment (silicone oil) to avoid
slow crack growth effects. Data points are individual experimental
measurements: closed symbols represent failures from indentation ori-
gins, open symbols from other origins. Shaded box at left axis repre-
sents strengths of polished, unindented specimens. Vertical dashed
lines indicate threshold loadsPC for cracking,PY for yield, andPD for
first degradation. Solid curves are theoretical fits.

Fig. 6. Strength degradation of Hertzian-indented glass-ceramics as
a function of contact load: (a)F-MGC, failure from ring cracks; (b)
C-MGC, failure from shear faults. Indentations with WC sphere,r 4
3.18 mm. Four-point bend-strength specimens, 3 mm × 5 mm × 25 mm
with polished surfaces and chamfered and polished edges. Tests in fast
loading (<10 ms) in inert environment (silicone oil) to avoid slow
crack growth effects. Data points are experimental measurements, er-
ror bars indicating standard deviations for three to five specimens:
closed symbols represent failures from indentation origins, open sym-
bols from other origins. Shaded box at left axis represents strengths of
polished, unindented specimens. Vertical dashed lines indicate thresh-
old loadsPC for cracking,PY for yield, andPD for first degradation.
Solid curves are theoretical fits.

June 1998 Model of Strength Degradation from Hertzian Contact Damage in Tough Ceramics 1513



an integral penny-crack system, with superposable stress-
intensity factors from each component of resolved stress acting
on the fault and crack segments.38,39 We adopt a hybrid ap-
proach here, in an effort to provide a simple solution without
compromising essential features of the strength response.

Accordingly, we consider the composite shear-fault/wing-
crack system in Fig. 8 as a planar penny crack with center
loading from the residual stresses on the shear fault, of effec-
tive radius

C 4 c + gl (5)

wherec is the annular wing crack width andl the shear fault
radius, andg is a dimensionless geometry coefficient. In the
manner of Horii and Nemat-Nasser,14 gl may be viewed as a
correction term to allow for the contribution of the fault surface
to the effective length of the composite crack—those authors
determineg 4 0.27. As we shall show, this term usefully
allows us to express the conditions for crack initiation and
propagation in a unified formulation. The net shear stresst*
over the fault area gives rise to an opening center forceQ on
the unloaded crack,12

Q 4 ll2t* (6)

with l a dimensionless coefficient. Again, Eq. (6) holds only if
t* # tc, such that no reverse sliding occurs; ift* > tc, so that
reverse sliding does occur,Q reduces toQ0 4 ll2tc.12 We will
confirm later that the latter state is not attained in the case
studies considered here (Section V).

The persistence of the forceQ imposes a residual mode I
stress-intensity factor on the crack in Fig. 8, somewhat akin to
the intrinsic ‘‘microstructural driving force’’ envisaged by
Cook et al.40 The residualK-field may be written in the same
equilibrium form as Eq. (2):

KF 4 xQ/C3/2 4 T0 (7)

(3) Strength
Now suppose that the residual fault/crack system is sub-

jected to an applied tensile stresss, Fig. 8. The net stress-
intensity factor on the composite crack is made up of mode I
contributionsKF from the residual forceQ (Eq. (7)) andKA
from the applied tensions:

K 4 KF + KA 4 xQ/C3/2 + CsC1/2 4 T0 (8)

at equilibrium, withT0 the toughness of the material through
which the wing crack propagates (e.g., grain boundary in poly-
crystal, matrix phase in ceramic with platelet inclusions). Sub-
stituting Eq. (6) and defining the dimensionless quantities

# = C/ l (9a)

6 = csl1/2/T0 (9b)

7* = xlt* l
1/2/T0 (9c)

Equation (8) transposes to a normalized expression for
6(#,7*):

6 = ~1/#1/2!~1 − 7* /#3/2! (10)

Plots of6(#) for specified values of7* are shown in Fig. 9.
These functions have maxima at

Fig. 8. Model for extension of wing crack from shear fault. (a) Coordinate system. Composite crack is treated as pennylike with virtual radius
C 4 c + gl (g 4 0.27),c annular wing crack radius andl fault radius. (b) Two-step indentation–strength sequence: compression field at contact
load P forms fault with residual shear stresst*; subsequent application of tensile stresss takes crack to failure.

Fig. 9. Normalized plot of applied tensile stress6 as function of
crack length# for extension of wing crack, at specified residual shear
stresses7*. Vertical dashed line at# 4 g 4 0.27 denotes virtual edge
of shear fault from which wing cracks extend. In range7* > 0.035
cracks extend stably to maximum in curve prior to failure.
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#M = ~47* !2/3 (11a)

6M = 3/@4~47* !1/3# (11b)

Included in Fig. 9 is the vertical dashed line# 4 g 4 0.27
representingc 4 0 in Eq. (5), i.e., the edge of the shear fault
from which the lengths of the wing cracks are measured. Note,
however, that#M and6M in Eq. (11) are independent ofg.

The curves in Fig. 9 show how the strength responses vary
with the level of residual shear stress7* on the fault. The
maximum falls to the right of the dashed line, i.e.,#M > 0.27,
corresponding to7* > 0.035 in Eq. (11a). Within this region
the crack grows stably with increasing6 prior to failure, and
the normalized strength is given directly by6F 4 6M in Eq.
(11b). Note two distinct subregions, delineated by the condition
6 4 0 at# 4 0.27, corresponding to7* 4 0.14 in Eq. (10):
‘‘subthreshold activated,’’ within 0.035 <7* < 0.14, where a
wing crack initiates during tensile loading prior to failure;
‘‘postthreshold activated,’’ within7* > 0.14, where a wing
crack initiates during the preceding contact cycle. There is a
region beyond the contact yield point at 0 <7* < 0.035 (not
represented in Fig. 9) where failure is ‘‘spontaneous’’ from the
fault edge# 4 g 4 0.27 during stressing, with the strength
given by6F 4 6(g,7*) in Eq. (10).

Accordingly, the strengthsF 4 sM over the bulk of thet*
range beyond the contact yield point may be deconvoluted
from Eq. (11b) by inserting Eqs. (9b) and (9c) to obtain

sF 4 (3/4C)(T4
0/4xll2t*)1/3 (12)

This constitutes our basic strength relation for the data analysis
to follow (Section V).

Equation (12) holds above a critical degradation residual
stresst* > tD, where the wing crack constitutes the dominant
flaw in the strength specimen. Att* < tD, the strengthsF is
equal to the natural (unindented) strengths0, independent oft*.

(4) Hertzian Field
Thus far we have considered the mechanics for a composite

shear-fault/wing-crack within a volume element in a uniform
stress field. This yields the relation in Eq. (12) for strength in
terms of the residual shear stress on the fault,sF(t*). Here we
concern ourselves with the strength response in nonuniform
Hertzian contact fields. Specifically, we seek a relation for the
strength as a function of contact load,sF(P). As indicated in
Fig. 8, failure is expected to occur from a critical fault located
beneath the contact along the symmetry axis, with the fault
plane oriented close to 45° to this axis, where the shear stresses
are greatest; and with the effective wing crack plane closely
orthogonal to the tensile stresss. We assume that the fault–
crack system is sufficiently small relative to the scale of the
damage zone that the stress gradients over its diameter may be
considered negligibly small.

This leaves us to determine a connecting relationt*(P) for a
given material system and sphere radius. An analytical expres-
sion for this function is not feasible for quasi-plastic solids,

because of the high degree of nonlinearity in the indentation
stress–strain responses. Accordingly, we are forced to resort to
finite element modeling (FEM) of the contact stress fields to
determine this relation. Details of such modeling, using a criti-
cal shear stress condition for yield, have been described else-
where.26 Computations have been carried out for the specific
C-Si3N4

24 and C-MGC materials under consideration here.25

The FEM procedure begins with a predetermination of input
parameters for any given material, by independent measure-
ment and by best-fitting indentation stress–strain curves.26 The
maximum principal shear stress within the contact zone is then
evaluated from the algorithm at specified load intervals, giving
tP(P). In the spirit of our approximationm 4 0 in Eq. (4), we
may then invoke the uniaxial yield stress relationY4 2tc (Ref.
12) to evaluatet*(P) 4 tP(P) − Y/2.

V. Theoretical Fits to Strength Data

We now apply the above analyses to the strength degradation
data for Si3N4 in Fig. 5 and MGC in Fig. 6, for failure from
both ring cracks in theF materials and shear-fault/wing-cracks
in theC materials. Detailed descriptions of appropriate param-
eter calibrations of the materials, in conjunction with FEM
analyses, are available in separate studies.24,25 Only a brief
description of these calibrations is given here. Results are sum-
marized in Table II.

(1) Fine Microstructures—Failure from Ring Cracks
For predictive evaluation of failure from ring cracks in the

F-Si3N4 and F-MGC materials, the following parameters in
Eqs. (1) to (3) are predetermined as follows: (i) cone anglea0
in Eq. (1), from section micrographs (e.g., Figs. 1(a) and 2(a));
(ii) surface ring crack radiusR0 in Eq. (1), from direct mea-
surements of surface traces at critical loadPC (noteR0 does not
expand at higher load, even though the contact radius does, and
may even engulf the first, inner surface ring cracks and initiate
new, outer rings); (iii) toughnessT0 in Eq. (3), from indepen-
dent Vickers indentation tests; (iv) coefficientx in Eq. (2),
from measurement of virtual cone sizes at different loads,C(P)
(together withT0) (Appendix A); (v) coefficientC 4 C(a0) in
Eq. (3), from a theoretical evaluation of crack reinitiation
within the tensile field at the cone base19 (Appendix A).

The resulting calculated functionssF(P) are included as the
solid curves forF-Si3N4 andF-MGC in Figs. 5(a) and 6(a). The
horizontal lines atP < PC in those figures correspond to the
mean natural (unindented) strengthss0 for each material
(Table II). The curves atP > PC correspond to the cone crack
predictions from Eqs. (1) to (3). The predicted curves account
for the extent of the strength loss atP 4 PC, and provide lower
bounds for the subsequent degradation at higher loads.

(2) Coarse Microstructures—Failure from Shear Faults
The microscopic shear-fault/wing-cracks in theC-Si3N4 and

C-MGC materials are less accessible to direct measurement.
Accordingly, calibration of Eq. (12) for strength evaluation in

Table II. Material Variables for Ceramics Used in This Study
Material F-Si3N4 C-Si3N4 F-MGC C-MGC

Natural strength,s0 (MPa) 885 792 304 126
Toughness,T0 (MPazm1/2) 3.9 0.9
Young’s modulus,E (GPa) 335 315 69 49
Poisson’s ratio,n 0.27 0.29 0.25 0.25
Yield stress,Y 4 2tc (GPa) 7.3 0.9
Strain-hardening coeff,a 0.5 0.2
Ring crack radius,R0 (mm) 310 (r 4 2.38 mm) 360 (r 4 3.18 mm)
Ring crack angle,a0 (deg) 19.0 18.5
Critical ring crack load,PC (N) 2100 700
Critical yield load,PY (N) 1300 75
Degradation load,PD (N) 2600 240
Cone crack coeff,C 0.71 0.79
Cone crack coeff,x 15.4 × 10−3 16.0 × 10−3
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the coarse structures is conducted in a more empirical manner,
using FEM to determine the dependencet*(P)26 and thus to
generate the full strength degradation functionsF(P).

To determinet*(P), we use an elastic–plastic constitutive
uniaxial stress–strain relation, in accordance with a critical
shear stress condition for yield, in the FEM algorithm (Appen-
dix B), with the following input parameters (Table II):
(i) elastic parameters, Young’s modulusE and Poisson’s ratio
n, from sonic measurements; (ii) yield stressY, from measure-
ments ofPY 4 pa2pY 4 1.1pa2Y in Figs. 5(b) and 6(b);41 (iii)
linear strain-hardening coefficienta, which quantifies the de-
gree of quasi-plasticity, by best-fitting indentation stress–strain
curves26 (Appendix B).

FunctionstP(P) obtained in this way forC-Si3N4
31 andC-

MGC25 are plotted in Fig. 10. The horizontal dashed lines at
tP 4 tc 4 Y/2 represent the onset of yield, corresponding to
t* 4 0. The vertical dashed lines represent the loadsP 4 PD
(Figs. 5(b) and 6(b)), from which we may directly evaluate the
residual shear stressest* 4 tD at which degradation first oc-
curs (Table II). The functiontP(P) is bounded by curves for
hypothetical extremes: fully elastic (a 4 1), upper dashed
curves, calculated from the Hertzian elasticity equations; fully
plastic (a 4 0), given by the horizontal dashed line through
tP 4 tc. Note that the functionst*(P) 4 tP(P) − tc that derive
from the plots in Fig. 10 satisfy the conditiont* < tc for zero
reverse sliding assumed in Section IV.

An empirical fit to the FEM-generated functions (Appendix
B) yields the approximate result

t*/tc 4 a[P/PY)1/3 − 1] (P > PY) (13)

Inserting the natural strengthsF 4 s0 at t* 4 tD into Eq. (12)
yields

sF/s0 4 (tD/t*)1/3 (14)

Identifying t* 4 tD with P 4 PD in Eq. (13), and combining

with Eq. (14), we obtain an explicit expression for the strength
degradation:

sF 4 s0[(PD
1/3 − PY

1/3)/(P1/3 − PY
1/3)]1/3 (P > PD) (15)

The resultant strength–load functionssF(P) for C-Si3N4 and
C-MGC, using the measured values ofPY andPD, are included
as the solid curves in Figs. 5(b) and 6(b). Again, the horizontal
lines atP < PD correspond to the mean natural strengthss0 for
each material (Table II). The fits account for the continuous,
ultraslow strength falloff.

VI. Microcrack Coalescence

So far we have assumed that failure occurs from a single
microcrack. What happens when the fault densityN becomes
sufficiently large that coalescence with neighboring cracks
occurs before a potentially critical wing crack attains insta-
bility during the strength test? The prospect of coalescence
increases as the characteristic separationd ≈ 1/2N1/3 reduces
toward the crack diameterC (Fig. 11), with attendant cata-
strophic falloff in strength. Such a catastrophic falloff is not in
evidence in Figs. 5 and 6, but has been observed in repeat
contact experiments.9,25

For any given residual shear stresst* (or contact loadP), the
condition for coalescence is that a stably extending crack
should intersect its neighbor before satisfying the instability
condition. Ignoring crack–crack interactions in the stress-
intensity factors, this condition is simply$ # #M, where$ 4
d/l (cf. Eq. (9a)). With Eq. (11), this condition corresponds to
$ # (47*)2/3. The strength within this coalescence region is
then given by inserting# 4 $, 6 4 6F into Eq. (10):

6F 4 (1/$1/2)(1 − 7*/$3/2) (7* > $3/2/4) (16)

predicting a linear falloff with respect to7* in 6F(7*). To
highlight this falloff, we plot6F(7*) in Fig. 11 in logarithmic
coordinates, for three selected values of$.

In principle, the falloff in Fig. 11 continues to the7* axis, to
zero strength. In reality such degradation is usually limited,
because the microcracks usually only propagate to the bound-
ary of the damage zone (or perhaps a little beyond, in extreme
cases), producing strength levels more like those from fully
developed radical cracks.9,25 Nevertheless, such falloff spells
the beginning of the end for the useful lifetime of these mate-
rials, if not from strength degradation then by excessive mate-
rial removal.

VII. Discussion

In this paper we have developed models for strength degra-
dation in Hertzian contacts: from ring cracks in fine (F), ho-
mogeneous structures (brittle response); and from microdam-
age cracks in coarse (C) heterogeneous structures (quasi-plastic
response). In both cases we have represented the cracks as
‘‘virtual’’ pennies, to simplify and accommodate geometrical
complexities. Theoretical fracture mechanics then yields ap-
propriate strength–load functionssF(P) in the degradation
region, and identifies controlling material variables. Silicon
nitride (Si3N4) and micaceous glass-ceramic (MGC) micro-
structures (Table I) afford illustrative case studies for data
analysis (Table II).

Essential features of the models for theF and C structure
types are as follows:

(i) F structures. Failure occurs from truncated cone
cracks. The fracture mechanics relations Eqs. (1) to (3) make
due allowance for the truncation (Fig. 7), specifically for the
location of the virtual tip above the indented surface, with
consequent improvement in data fitting relative to earlier mod-
els.19 These equations account for the abrupt falloff in strength
at the critical contact loadPC, and slow falloff thereafter at
P > PC (Figs. 5(a) and 6(a)). From direct measurements ofPC,
surface ring crack radiusR0, and crack anglea0, all of the

Fig. 10. FEM-generated maximum shear stresstP on faults within
Hertzian contact zone as function of contact loadP for coarse micro-
structures, for WC sphere radius specified: (a)C-Si3N4 and (b) C-
MGC. Critical loads for onset of yield,P 4 PY, and degradation,P 4
PD, indicated.
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geometrical coefficients in Eqs. (1) to (3) can be experimen-
tally predetermined, conferring the model with a certain pre-
dictive capability. The fact that the data points at higher loads
in Figs. 5(a) and (especially) 6(a) lie above the predicted curves
at P > PC may be attributable to engulfment of the surface ring
cracks by the ever-expanding contact circle, leading to arrest of
the inner ring cracks and the initiation of multiple cones.24

(ii) C structures. Failure occurs from individual shear-
fault/wing-cracks within the damage zone population (Fig. 8).
The model accounts for the relatively continuous falloff in
strength atPD, and even slower falloff (relative toF structures)
at P > PD (Figs. 5(b) and 6(b)). At the same time, the model
allows for catastrophic loss from crack coalescence at extreme
loads (or, potentially, numbers of cycles). Interesting inclu-
sions in the formation are the residual fault driving forceQ
(Eqs. (7) and (8)) and the fault-length contributiongl to the net
size of the virtual crackC in Eq. (5). The point forceQ pro-
vides a stabilizing influence on the crack growth prior to fail-
ure, with progressively enhanced extension (#M) and dimin-
ished strength (6M) at increasing residual stress (7*). This kind
of stabilization is common in indentation problems.42,43How-
ever, while g modifies the actual crack length, it does not
feature in Eq. (12), so the strength is insensitive to the value of
this parameter. Parametric calibration of Eq. (15) involves
measurement of the loadPY at first yield, and of the loadPD at
first strength degradation belows0. Because of the empirical
nature of this latter adjustment, Eq. (15) is not amenable toa
priori predictions ofsF(P).

A key element of the study is the role of microstructure in
determining the fundamental mechanism of the strength deg-
radation, by controlling the degree of quasi-plasticity. In the
materials chosen for examination here24,25 the brittle–plastic
transition is effected primarily by grain coarsening and elon-
gation, with intrinsic provision for shear-activated faulting at
weak internal interfaces.8 The single material parameter that
most compellingly quantifies this transition is the strain-
hardening coefficienta (a measure of the density of active
faults within the contact compression–shear zone12) in the con-
stitutive stress–strain relation used in the FEM computations
(Appendix B). The effect of reducing this parameter between
the boundsa 4 1 (full elasticity) anda 4 0 (full plasticity) is
to depress thet*(P) curve (Fig. B2, Appendix B), rendering the
ceramic structure less susceptible to abrupt strength losses as
ring cracking is suppressed in favor of quasi-plastic deforma-
tion. For theC materials, insertingt* 4 tD at P 4 PD into Eq.
(13) yieldsPD/PY 4 [(tD/atc) + 1]3, so that reducinga in-
creasesPD (recalltD is constant at fixeds0 in Eq. (14)), shift-
ing sF(P) to higher loads in Eq. (15) and diminishing the deg-
radation further.

The fault–crack model forC structures provides approximate
bounding solutions for crack initiation and coalescence during
the initial contact cycle, as starting conditions for the strength
test. The critical conditiont* 4 ti for contact-induced wing
crack initiation isKF 4 T0 at c 4 0 in Eqs. (5) to (7), yielding

ti 4 (g3/2/xl)T0/l1/2 (17)

i.e., a Hall–Petch relation in fault size.38 Note that incorpora-
tion of the fault ‘‘correction’’ termg is paramount here—to
ignore the fault is to imply spontaneous initiation (i.e.,g 4 0,
ti 4 0). The sizeC0 of the resulting wing cracks beyond the
initiation stress level is obtained from Eqs. (6) and (7):

C0 4 (xll2t*/T0)
2/3 (t* > ti) (18)

corresponding to the appropriate intercept along the# axis in
Fig. 9. The critical conditiont* 4 tD for contact-induced
coalescence (‘‘disintegration’’) at high fault densities (Fig. 10)
is given by equatingC0 4 d in Eq. (18), giving

tD 4 T0d3/2/xll2 (19)

indicating upper practical limits to the concentration of shear
faults (N ≈ 1/8d3) and grain size (l) in heterogeneous
microstructures.

In this paper we have presented data using a single sphere
radiusr for each material. How do the strength characteristics
in Figs. 5 and 6 depend on variations inr? Indentation damage
modes are renowned for their strong size effects.34 Generally,
as the indenter radius is reduced, fracture is progressively sup-
pressed relative to plasticity, enhancing any brittle–plastic tran-
sition.44–46With the ring crack mode, the main effect is felt in
the critical load where the strength undergoes its abrupt de-
cline, generally with a sphere size dependence somewhere be-
tweenPC ~ r andPC ~ r2.32,33,47A secondary effect is felt in
the ensuing degradation atP > PC, via some scaling ofr with
the surface ring crack radiusR0 in Eq. (1). With the quasi-
plasticity mode, the yield response in monolithic materials usu-
ally satisfies the requirements of geometrical similarity, ex-
pressible asPY ~ r2, PD ~ r2,41 with the associated shear
stressestc and tD invariant. A more complete analysis of
sphere-size effects in the analysis of strength degradation of
Si3N4 will be given elsewhere.24

Some limitations in our model for quasi-plastic ceramics are
acknowledged. In the fracture mechanics analysis we have as-
sumed an annular pennylike geometry for the wing crack, with
c−3/2 falloff in KF in Eq. (7); others have assumed a line-crack
geometry with extension confined to the top and bottom ends
of the fault,13–17 and withc−1/2 falloff. The latter dependence
would result in a faster strength falloff insF(P). Actual behav-

Fig. 11. Coalescence of wing cracks: (a) coordinate system; (b) plot of normalized strength6F as function of residual shear stress7* for wing
crack extension (solid curve), showing coalescence-associated falloff for specified values of microcrack separation D.
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ior probably lies somewhere between these two bounds. We
have assumed that the fault undergoes no reverse sliding during
contact (t* < tc), so that the net shear stresst* on the shear fault
at maximum load persists on unloading. If reverse sliding were
to occur (t* > tc), thent* would relax back totc at full un-
load.12 And sincetc is independent ofP, the strength degra-
dation would saturate. However, the conditiont* > tc is not
achieved in either material investigated here (Fig. 10). In deal-
ing with the friction stresstf in Eq. (1) we have expediently
omitted them term. The presence of this term would suppress
sliding somewhat during the expanding contact, i.e., lowert*,
further complicating thet*(P) relations derived from the FEM
computations. We have neglected any internal residual mis-
match stresses acting on the cracks. Such stresses, which can be
substantial in ceramics, would shift the strength curvessF(t*)
up (compression) or down (tension) in Fig. 10. We have taken
the toughness of our materials to be single-valued, on the basis
that the wing-crack extensions are only on the microscopic
scale, whereas in reality heterogeneous ceramics with coarse
structures exhibitR-curves. Also, crack–crack interactions in
the stress-intensity factor formulation of Section IV have been
ignored. Although these interactions are generally not substan-
tial until the crack separations are very small,48 they could be
significant in the coalescence condition in Section VI. Finally,
in determining the empirical relation Eq. (13) we have ignored
deformation of the spherical indenter, which occurs in tests on
harder ceramics like Si3N4.24,26 All these limitations, taken
together with the empirical nature of our calibrations for theC
materials in Section V, especially in relation to the function
t*(P), lend the model a somewhat phenomenological flavor. In
this context, absolute values for some of the calibrated param-
eters should not be taken too literally. At the same time, the
theoretical strength degradation function in Eq. (15) is not
highly sensitive toP, and accounts for all the broader data
trends.

With this last qualification, the model is well placed for
extension to contact fatigue.37 This is accommodated by attri-
tion of tf in Eq. (1), specifically the friction parameterstc
and/orm, leading to a progressive increase int*.12 An optimum
condition for attrition would appear to be reverse sliding at the
faults during unloading,37 i.e., t* > tc. In the present experi-
ments the progressive yield within the quasi-plastic damage
zone limits the build up oft* to levels well belowtc (Fig. 10).
Yet accelerated strength loss in repeat loading apparently does
occur in heterogeneous ceramics over the load range repre-
sented here.25,37 This raises the issue of stochastics: real ce-
ramics are inevitably characterized by a distribution in fault-
sizes, so the yield condition is subject to a statistical element.6

It needs only one particularly large fault to activate below the
nominal yield stress in order for degradation to occur. The
issue of fatigue in these quasi-plastic materials will be pursued
elsewhere.

APPENDIX A

Evaluation of Cone Crack ParameterC

Evaluations of the two geometrical coefficients in the ring-
crack formulation listed for theF materials in Table II,x in Eq.
(2) andC in Eq. (3), are made using data from separate studies.

Figure A1 plotsC vs P2/3 from measured values ofc(P) in
conjunction with Eq. (1), forF-Si3N4

24 andF-MGC.25 Asymp-
totic data fits yield the values ofx 4 T0C3/2/P (Eq. (2)) listed
in Table II.

Figure A2 is a plot ofC as a function of cone anglea0,
which depends on Poisson’s ratio.49,50 The functionC(a0) is
determined from an analogous functionV(a0), with C 4
(Vp)1/2, generated from a detailed fracture mechanics analysis
of crack initiation at the cone base in an applied tensile field
(tensile axis normal to cone axis).19 The values ofC are then
determined at the measured crack anglesa0 in Table II.

APPENDIX B

FEM Evaluation of Elastic–Plastic Contact Field

The starting points for finite element modeling (FEM) evalu-
ations of the functiont*(P) in Section V (2) are indentation
stress–strain curves, which plot mean contact pressurep0 (in-
dentation stress) againsta/r (indentation strain). Such stress–
strain curves forC-Si3N4

24 and C-MGC25 are shown in Fig.
B1. Note that the curve forC-MGC is considerably lower and
flatter than that forC-Si3N4, indicating a much softer material.

Models of frictional sliding at shear faults in applied uniform
compression fieldssA predict a linear strain-hardening relation
between uniaxial stresssA and strain«A

12,26

sA 4 Y + a(«AE − Y) (sA > Y) (B-1)

with E Young’s modulus andYyield stress, in accordance with
a critical shear stress criterion for slip. Equation (B-1) is used
as a constitutive relation for the FEM analysis. The FEM al-
gorithm assumes a frictionless contact between WC sphere and
specimen surface, and contains provision for deformation of

Fig. A1. Plots of C vs P2/3 for F-Si3N4 (data from Ref. 24) and
F-MGC (data from Ref. 25.)

Fig. A2. Crack geometry coefficientC as a function of cone an-
gle a0 (generated from Ref. 19). Angles forF-Si3N4 and F-MGC
indicated.
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the sphere (essential with harder materials like Si3N4).26 Input
elasticity parameters areE andn, plasticity parametersYanda.
Here, all parameters are obtained by independent means, ex-
cept a, which is adjusted to fit the stress–strain curves. Such
fits are included as the solid curves in Fig. B1.

With these parameter calibrations, the FEM algorithm en-
ables evaluation of the maximum shear stresstP along the
symmetry axis, at depth≈ 0.5a (a contact radius). Resulting
values oftP at increments of loadP for theC-MGC materials,
but for a series of hypotheticala values, are plotted as data
points in Fig. B2. AboveP 4 PY these data appear to scale
with a, with lower bound attP 4 tc 4 constant and upper
bound attP 4 tc(P/PY)1/3 (Hertzian elasticity solution).51 Ac-
cordingly, writing t* 4 tP − tc, we fit an empirical function

t*/tc 4 a[(P/PY)1/3 − 1] (B-2)

to the intervening data in Fig. B2.
A similar analysis for the harderC-Si3N4 material reveals

analogous trends, but is complicated by effects from deforma-
tion of the WC sphere at the highera values. Then Eq. (B-2)

overestimatest*/tc, so the strength degradation relation in Eq.
(15) is conservative.

The resultingt*(P) functions forC-Si3N4 andC-MGC using
actual calibrated values ofa from Table II are plotted as the
solid curves in Fig. 10.
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